
1 Problem 1

1.1 Question 1

Table 1 shows summary statistics for the entire sample and for firms with a
degree of unionization above/below 50 percent.

The data set includes observations on 36,495 workers. There are 1,000 firms
and about 85 workers per firm on average. The median is 60 workers per firm
indicating that the firm size distribution is skewed. Indeed, the largest firm
in the sample has 394 workers. More than half of the workers in the sample
(21,132/36,495) are potentially covered by union bargaining. The median wage
level is 276,000 DKK, but the dispersion is large with some earning more than
600,000 DKK and others earnings only 100,000 DKK.

Based on the median, the level of earnings appears to be slightly higher in
firms potentially covered by union wage bargaining. These firms also appear
to be slightly bigger than firms with a unionization rate below 50. However,
the firm size difference does not come out so clearly when judged by the mean.
The fraction of women and the age distribution appear to be similar across
firms covered by unionized wage bargaining and not.

In summary, the descriptive statistics indicate that there is a potential for a
unionized wage bargaining premium to exist.

Union frac>=50 variable N mean p50 min max
0 number of employees 15363 86.4725 57 0 394

union 15363 .3826727 0 0 1
age 15363 39.38918 39 20 59
female 15363 .6480505 1 0 1
wage 15363 265586 251921.9 102048.1 611561.9

1 number of employees 21132 84.38515 63 0 394
union 21132 .6059057 1 0 1
age 21132 39.5229 40 20 59
female 21132 .6539372 1 0 1
wage 21132 283993 269392.3 110550.9 634096.1

Total number of employees 36495 85.26384 60 0 394
union 36495 .5119331 1 0 1
age 36495 39.46661 40 20 59
female 36495 .6514591 1 0 1
wage 36495 276244.3 262051.3 102048.1 634096.1

1.2 Question 2

Below, we show the kernel densities of log wages.1 In the first graph all obser-
vations are used, whereas in the second and third graphs only include observa-
tions for firms with union coverage of, respectively, 0.40− 0.60 and 0.45− 0.55.
All graphs broadly show the same picture, that wage with union agreements

1It is ok if wage levels are used in stead of log wages although the latter usually is most appro-
priate.
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1.2 Density of log wages, all data

stochastically dominates those without union agreements. This is in accor-
dance with the trade union theory.

2 Problem 2

2.1 Question 1

We can use RD to estimate the effect of being covered by a wage agreement
when there is a jump in the probability of being in covered by a union. In the
question it does not completely rule out that union wage agreements could ex-
ist for firms with less than 50 percent union members. We assume that this is
not the case and, hence, that we have a sharp RD, where the probability of be-
ing covered by a union increases discretely from 0 to 1 at the 50 percent cutoff.
The RD design boils down to comparing wages just below and above the 50
percent cutoff and attributing the difference in the wage below and above to
the union wage agreement. We only estimate a local treatment effect, which
holds at the 50 percent cutoff.

However, we can only use RD if there is no manipulation of the running
variable. Therefore, if it is the case that workers influence each other to join a
union when for example the profits are large, the RD design will be invalid for
estimating the effect of being covered by a wage agreement.
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2.2 Regression discontinuity with a linear specification

2.2 Question 2

We have shown two binned scatterplots. In the first, we have a linear fit on each
side of the cutoff and in the second a quadratic fit. Both show a clear jump in
the wages at the cutoff of 50 percent. From eye-balling, the preliminary effect
seems to be 7 percent.

2.3 Question 3

2.3.1 (a)

We are asked to estimate a linear model with the same slope on each slides
without using control variables. This amounts to estimating the following re-
gression model

ln wi = β0 + β1U f rac+ ρ (U f rac ≥ 0.50) + ui

where i denotes the individual worker and ui is an error-term. We are primar-
ily interested in estimating the treatment effect ρ. The parameter estimates is
shown in the table below. In the first column, we use heteroscedasticity ro-
bust standard errors, whereas we in the second use standard errors clustered
on firm level. It seems reasonable to cluster on firm level since workers in the
same firm may be subject to similar shocks. Furthermore, the experimental
variation is at the firm-level. In both cases, our treatment effect estimate at
6.9 percent is significant at a 1 percent level, but the clustered standard errors
are larger. Hence, we will use clustered standard errors in the estimations to
follow.

3



Simple model with same slopes on both sides and no control variables
Robust standard errors Clustered standard errors (on firm)

ρ 0.069*** 0.069***
(0.006) (0.009)

β1 -0.004 -0.004
(0.023) (0.032)

β0 12.435*** 12.435***
(0.009) (0.013)

* p<0.10, ** p<0.05, *** p<0.01

2.4 (b)

Compared to the previous model, we now include control variables while still
restricting the slope to be the same on both sides of the cutoff. Including covari-
ates does not change the estimate of the treatment effect, nor its significance.
We see that older workers and men, on average, have higher earnings.

Simple model with same slopes on both sides and control variables
ρ 0.070***

(0.009)
β1 -0.010

(0.032)
age 0.003***

(0.000)
female -0.071***

(0.004)
num_emp -0.000

(0.000)
β0 12.370***

(0.014)
* p<0.10, ** p<0.05, *** p<0.01

2.4.1 (c)

We asked to estimate a model, which allows for different slopes on each side of
the cutoff. It is not specified in the question whether we should include control
variables, so we estimate the model with and without control variables. Let
Di = (U f raci ≥ 0.50), then we can write the model as

ln wi = β0 + β1 (U f raci − 0.50) + β2 (U f raci − 0.50) · Di + ρDi

+β3agei + β4 f emalei + β5num_empi + ui

The two specifications imply estimates of 7.0 and 7.1 percent higher wage with
a collective agreement. Both estimates are significant at 1 percent, but not sig-
nificantly different. The main conclusion is that allowing for different slopes
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only changes the estimate marginally. The effect of the control variables is sim-
ilar to problem 2, question 3 (b).

Model with different linear slopes on each side of the cutoff
Without control variables With control variables

ρ 0.070*** 0.071***
(0.009) (0.009)

β1 -0.077 -0.075
(0.048) (0.048)

β2 0.140** 0.124*
(0.064) (0.063)

age (β3) 0.003***
(0.000)

female (β4) -0.071***
(0.004)

num_emp (β5) -0.000
(0.000)

β0 12.424*** 12.356***
(0.008) (0.011)

* p<0.10, ** p<0.05, *** p<0.01

2.4.2 (d)

In this question, we are going to allow for quadratic trends on each side of the
50 percent cutoff. We state the model without control variables

ln wi = β0 + β1 (U f raci − 0.50) + β2 (U f raci − 0.50) · Di

+β3 (U f raci − 0.50)2 + β4 (U f raci − 0.50)2 · Di + ρDi + ui

However, we estimate the model with and without control variables. Allow-
ing for quadratic trends implies that the parameter estimate increases slightly
to 7.5 and 7.6 percent depending on whether control variables are included.
Again, we obtain similar estimates for the control variables as in the previous
questions.
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Model with different quadratic slopes on each side of the cutoff
Without control variables With control variables

ρ 0.075*** 0.076***
(0.012) (0.011)

β1 -0.205 -0.210*
(0.128) (0.124)

β2 0.302* 0.306*
(0.163) (0.159)

β3 -0.415 -0.439
(0.361) (0.356)

β4 0.293 0.268
(0.479) (0.480)

age 0.003***
(0.000)

female -0.071***
(0.004)

num_emp -0.000
(0.000)

β0 12.418*** 12.350***
(0.009) (0.012)

* p<0.10, ** p<0.05, *** p<0.01

2.4.3 (e)

In order to estimate heterogeneous effects of a variable x, we interact the indi-
cator function for being above the cutoff, i.e. Di = (U f raci ≥ 0.50), with the
variable while subtracting this variable’s mean. Hence, for each x variable we
will include terms such as Di (xi − x̄), where x̄ = N−1 ∑N

i=1 xi. Subtracting the
mean of the variables makes sure that we still capture the overall treatment
effect by the parameter ρ in the following equation

ln wi = β0 + β1Di

(
f emalei − f emale

)
+ β2Di (agei − age) + β3 (U f raci − 0.50)

+β4 (U f raci − 0.50) · Di + β5 (U f raci − 0.50)2 + β6 (U f raci − 0.50)2 · Di

+ρDi + β7agei + β8 f emalei + β9emp_numi + ui
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Model with heterogenous effects
ρ 0.076***

(0.011)
β1 (effect of female) 0.050***

(0.007)
β2 (effect of age) 0.002***

(0.000)
β3 -0.204

(0.125)
β4 0.300*

(0.159)
β5 -0.436

(0.358)
β6 0.260

(0.481)
age (β7) 0.002***

(0.000)
female (β8) -0.100***

(0.005)
num_emp (β9) -0.000

(0.000)
β0 12.407***

(0.015)
* p<0.10, ** p<0.05, *** p<0.01

The results show that whereas women, in general, receive lower wages (β8)
they benefit more from being in union wage agreements than men (β1). We see
that older workers, in general, earn more than younger workers probably due
to more experience (β7). In addition to this, older workers benefit more from
being in a union wage agreement (β2).

The regression involves sample averages computed prior to the estimation.
To obtain the right standard errors, we should bootstrap over the calculation
of means and the regression. However, in practice this is a minor concern since
sample means are precisely estimated. Thus, we have just computed clustered
standard errors clustered at the firm-level.

2.4.4 (f)

The earnings difference between a 50 years old woman covered by a union
agreement and a 30 years old man not covered by a union is

ρ · 1+ β1

(
1− f emale

)
+ β2 (50− age) + β7 (50− 30) + β8 · 1 =

0.076+ 0.050 · (1− 0.6515) + 0.002 · (50− 39.47) + 0.002 · (50− 30)− 0.100 = 0.051
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We find that on average, the 50 years old woman covered by a union agreement
earns 5 percent more. The standard errors of the estimated difference is 0.013,
so the difference is significant at a 1 percent level.

3 Problem 3

3.1 Question 1

To minimize the risk of mistaking a discontinuity from a non-linearity, we can
estimate the RD model nonparametrically. We will use a local linear nonpara-
metric regression due to its better boundary properties compared to the local
constant estimator. In practice, we simply estimate the following regression
using only observations in a short interval around the cutoff and weighting
each observation with the triangular kernel

ln wi = β0 + ρDi + β1 (U f raci − 0.50) + β2 (U f raci − 0.50) · Di + ui

Nonparametric RD
Bandwidth 0.025 0.050 0.100
ρ 0.121*** 0.084*** 0.073***

(0.017) (0.019) (0.015)
β1 -3.212** -0.729 -0.280

(1.405) (0.644) (0.283)
β2 0.517 0.641 0.458

(1.779) (0.777) (0.330)
β0 12.380*** 12.408*** 12.415***

(0.014) (0.016) (0.013)
* p<0.10, ** p<0.05, *** p<0.01

We obtain a similar estimate of the treatment effect compared with the para-
metric specifications in the previous questions using a bandwidth of 0.100.
However, with smaller bandwidths, the estimates are larger and even 0.121 for
a bandwidth of 0.025. The estimate for each specific bandwidth is significant
at a 1 percent level.

3.2 Question 2

In this question, we want to check that there is no discontinuity in the explana-
tory variables. Even though we control for explanatory variables, a (signifi-
cant) discrete jump in any of the explanatory variables would require differ-
ent specifications compared to what we have previously used. Besides this, it
seems difficult to rationalize discontinuities in the control variables apart from
perhaps the number of employees if recruitment is easier or labor turnover
lower for firms with union bargained wages.

8



Regression discontinuity with age as dependent variable

First, we consider the question graphically by using binned scatterplots.
Although the regression lines are not continuous through the 50 percentage
coverage point, simple graphical inspection suggests that there is not a signifi-
cant difference at the cutoff.

For the regressions, we will for each covariate k estimate the simplest spec-
ification with the same slope on both sides of the cutoff

covariateki = β0 + β1Di + β2U f rac+ ui

and the most general parametric model allowing for quadratic functions of the
running variable specific to each side of the cutoff

covariateki = β0 + β1Di + β2 (U f raci − 0.50) + β3 (U f raci − 0.50) · Di

+β4 (U f raci − 0.50)2 + β5 (U f raci − 0.50)2 · Di + ui

In both cases, β1 captures the effect at the cutoff and for the design to be cred-
ible, we need that our β1 estimate is insignificant. As show in the table below,
β1 is insignificant at all conventional significance levels for the two specifica-
tions for female and the number of employees. However, for age the effect at
the cutoff is significant at a 5 percent level for the simple specification and at 10
percent for the more general model. Therefore, we also estimate the nonpara-
metric RD specification for age using the same bandwidths as in the previous
question. We see that the estimates are significant at a 5 percent level with
bandwidths of 0.050 and 0.100, but insignificant with a bandwidth of 0.025.
If we have enough observations close to the cutoff, we would with RD prefer
working with a low bandwidth. Since we got significant effect with the log
wage with a bandwidth of 0.025, there should be enough observations close to
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the cutoff. Therefore, we conclude that there is no true discontinuity in age and
that the significant results arise due to extrapolation away from the cutoff.

Estimating the effect of the cutoff on the control variables
age female num_emp

β1 -0.473** -0.460* -0.002 -0.003 2.446 -6.577
(0.21) (0.27) (0.01) (0.01) (20.47) (32.54)

β2 (simple) 2.720*** 0.036 -20.309
(0.75) (0.03) (69.86)

β2 (general) 2.666 0.134 -218.611
(2.88) (0.11) (443.03)

β3 -0.106 -0.200 594.749
(3.91) (0.15) (461.05)

β4 0.846 0.104 -938.295
(9.02) (0.35) (1027.65)

β5 0.809 0.048 -821.136
(12.67) (0.48) (1091.81)

β0 38.348*** 39.685*** 0.634*** 0.662*** 94.244*** 79.843***
(0.30) (0.21) (0.01) (0.01) (31.47) (30.43)

p<0.10, ** p<0.05, *** p<0.01

Estimating the effect of the cutoff on age using nonparametric RD
Bandwidth 0.025 0.050 0.100
ρ -0.521 -0.807** -0.663**

(0.400) (0.408) (0.328)
β1 -31.539 5.828 5.528

(24.691) (15.409) (4.973)
β2 74.289* 17.168 -0.698

(37.845) (18.860) (6.529)
β0 39.421*** 39.795*** 39.810***

(0.304) (0.330) (0.252)
* p<0.10, ** p<0.05, *** p<0.01

3.3 Question 3

It is very important to examine whether there is manipulation of the running
variable. In the current setting with union bargaining one could fear that
union-covered workers could pressure each non-union members to become
union members in order to get the union to bargain for them. Then, we would
potentially have endogenous selection into union bargained wage agreements
and this would violate our identifying assumptions. It would clearly be prob-
lematic if workers are more likely to join the union if the firm has market power
and the workers want to get a bigger share of the profits.

The figures show the McCrary density test. In both cases a histogram is
estimated by binning the data. Subsequently, a local linear regression is fit
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Density test for manipulation of the running variable

Density test for manipulation of the running variable, DCdensity

on both sides of the cutoff. The figure clearly shows that the density is not the
same on both sides of the 50 percent cutoff. McCrary’s formal density test using
DCdensity gives a discontinuity estimate of 0.401 and standard errors of 0.026.
Hence, the null hypothesis of no bunching is strongly rejected. Therefore, there
is manipulation of the running variable and the identifying assumptions of
regression discontinuity design is not met. Therefore, the preceding analysis
will not identify a causal effect of union bargaining.

4 Question 4

We know whether firms are covered in 2014 since this is a deterministic func-
tion of the fraction of union members in the firm in 2014. To avoid the problem
of possible bunching at 35 percent in the union fraction in 2014, we could use
that in 2013 there is no bunching at 35 percent. Hence, we can exploit this in a
fuzzy regression discontinuity design by using a dummy for the union fraction
being greater than 35 percent in 2013 as instrument for having a union wage
agreement in 2014. More formally, let ln w2014

i denote the log of the wage in
2014, let x2013

i indicate the union fraction in 2013 for the firm the worker is em-
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ployed by in 2014, D2014
i indicate whether the individual works in a firm with a

union wage agreement in 2014, and let T2013
i denote a dummy for whether the

union fraction in 2013 is greater than 35 percent. For the simplest case where
we only assume linearity in the running variable, we have the model

ln w2014
i = β0 + β1x2013

i + ρD2014
i + ηi

with the following first stage equation

D2014
i = γ00 + γ1x2013

i + πT2013
i + ξ i

The estimate for ρ will capture the effect of being covered by a wage agree-
ment and we will identify this using the local variation around 35 percent for
the union fractions in 2013. It is important that we allow for polynomials in
the specification such that we do not identify our estimate for ρ based on as-
suming linearity in the running variable x2013

i . We can also estimate this instru-
mental variable model by local linear regression by weighting each observation
around the 35 percent cutoff.

An alternative empirical strategy is to use diff-in-diff. We can use that
workers employed in firms with union fractions between 35 and 50 percent
will have a union wage agreement in 2014,but not in 2013. As control group,
it seems most natural to use workers in firms with union fractions below 35
percent.

An alternative control group would be workers in firms with a union frac-
tion of more than 50 percent sincethey are covered in both years. However,
if dynamic effects of union wage agreements exist, this would not be an ideal
control group. For example, suppose a firm was not covered before 2013 and
that the full effect of union wage agreements only materializes after a couple
of years. Then, using this firm as a control is not ideal since part of the change
in wages between 2013 and 2014 is due to the firm only recently got a union
wage agreement.

Let D2014
it be a dummy for 2014, D35−50

it be a dummy for being in a firm with
a union fraction being in between 35 and 50 percent in 2013. Then, we would
estimate the following model

ln wit = β0 + β1D2014
it + β2D35−50

it + ρD2014
it × D35−50

it + ηit

The effect of a union wage agreement will be captured by ρ. One problem with
the diff-in-diff specification is that workers can change firm and that the union
fraction in the firm can change such that a firm with, say, a union fraction of 37
percent in 2013 only has a union fraction of 32 percent in 2014.

The diff-in-dif specification relies on an assumption of parallel trends. With
only two observations we cannot assess the validity of this assumption.

For both types of identification strategies in this question, we only obtain
the first year effect. This is unlike the sharp regression discontinuity design in
the previous questions. Furthermore, with only two years of data we cannot
examine whether dynamic effects are present.
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